skip to main content


Search for: All records

Creators/Authors contains: "Kinnison, Doug"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Massive Australian wildfires lofted smoke directly into the stratosphere in the austral summer of 2019/20. The smoke led to increases in optical extinction throughout the midlatitudes of the southern hemisphere that rivalled substantial volcanic perturbations. Previous studies have assumed that the smoke became coated with sulfuric acid and water and would deplete the ozone layer through heterogeneous chemistry on those surfaces, as is routinely observed following volcanic enhancements of the stratospheric sulfate layer. Here, observations of extinction and reactive nitrogen species from multiple independent satellites that sampled the smoke region are compared to one another and to model calculations. The data display a strong decrease in reactive nitrogen concentrations with increased aerosol extinction in the stratosphere, which is a known fingerprint for key heterogeneous chemistry on sulfate/H 2 O particles (specifically the hydrolysis of N 2 O 5 to form HNO 3 ). This chemical shift affects not only reactive nitrogen but also chlorine and reactive hydrogen species and is expected to cause midlatitude ozone layer depletion. Comparison of the model ozone to observations suggests that N 2 O 5 hydrolysis contributed to reduced ozone, but additional chemical and/or dynamical processes are also important. These findings suggest that if wildfire smoke injection into the stratosphere increases sufficiently in frequency and magnitude as the world warms due to climate change, ozone recovery under the Montreal Protocol could be impeded, at least sporadically. Modeled austral midlatitude total ozone loss was about 1% in March 2020, which is significant compared to expected ozone recovery of about 1% per decade. 
    more » « less
  2. null (Ed.)
    Abstract Matsuno–Gill circulations have been widely studied in tropical meteorology, but their impact on stratospheric chemistry has seldom been explicitly evaluated. This study demonstrates that, in a model nudged to reanalysis, anticyclonic Rossby wave gyres that form near the tropopause as a result of equatorially symmetric heating in the troposphere provide a dynamical mechanism to influence tropical and subtropical atmospheric chemistry during near-equinox months. The anticyclonic flow entrains extratropical air from higher latitudes into the deep tropics of both hemispheres and induces cooling in the already cold upper-troposphere/lower-stratosphere (UTLS) region. Both of these aspects of the circulation allow heterogeneous chlorine activation on sulfuric acid aerosols to proceed rapidly, primarily via the HCl + ClONO 2 reaction. Precipitation rates and heating rates from reanalysis are shown to be consistent with these heating and circulation response patterns in the months of interest. This study analyzes specified dynamics simulations from the Whole Atmosphere Community Climate Model (SD-WACCM) with and without tropical heterogeneous chemistry to demonstrate that these circulations influence substantially the distributions of, for example, NO 2 and ClO in the UTLS tropics and subtropics of both hemispheres. This provides a previously unrecognized dynamical influence on the spatial structures of atmospheric composition changes in the UTLS during near-equinox months. 
    more » « less